Mechanically verified mathematics in univalent foundations

Benedikt Ahrens

What is "mechanically verified" mathematics?

- Mathematics (definitions, statements, proofs) written in a formal language understood by a computer program: a computer proof assistant
- Correctness of proofs mechanically checked by the proof assistant:
 - Does the proof adhere to the rules determined by the foundations?
 - Does the proof prove the statement it claims to prove?

Why mechanical verification?

- Trust in a known system: the proof assistant's kernel
- To archive and disseminate knowledge in an interactive, searchable format
- Tool for teaching

Univalent foundations and proof assistants

Univalent foundations for proof assistants

- Voevodsky developed univalent foundations as a convenient foundation to mechanize mathematics in
- Voevodsky's starting point were proof assistants for Martin-Löf type theory, specifically the Coq proof assistant

Proof assistants for univalent foundations

- Ad-hoc changes to proof assistants for MLTT/CoC
 - Coq
 - Agda
- Development of new proof assistants with "native" univalence, based on cubical type theories

1 The UniMath library of mathematics in univalent style
The language underlying UniMath
The UniMath library

2 Things to do Propositional resizing Future work: Voevodsky's suggestions

1 The UniMath library of mathematics in univalent style
The language underlying UniMath
The UniMath library

2 Things to do Propositional resizing Future work: Voevodsky's suggestions

Origin: Voevodsky's library Foundations

In Feb 2010, Voevodsky started writing the Coq library *Foundations*, making precise his ideas collected in *A very short note on homotopy* λ -calculus.

```
Fixpoint isoffilevel (n:nat) (X:UU): UU:=
match n with X
S m >> forall x:X, (isoffilevel m (paths _ x x'))
end.

Theorem hleveletract (n:nat) (X:UU) (Y:UU) (n:X >> Y)(s:Y >> X)(sps: forall y:Y, paths _ (p (s y)) y): (isofflevel n X) >> (isoffilevel n Y).
Proof. intro. induction n. intros. apply (contril' _ p s eps X0).
intros. unfold isofflevel. intros. unfold sisofflevel in X0. assert (is: isofflevel n (paths _ (s x) (s x'))). apply X0.

Et (s':=maponpaths _ s x x'). set (p':=pathsec2 _ s p eps x').

Corollary hlevelwedf (n:nat) (X:UU) (Y:UU) (f':X >> Y)(is: isweq _ f): (isofflevel n X) -> (isofflevel n Y).

Proof. intros. apply (hlevelratcat _ f (inwmap _ f is) (wedgf _ f is)). assumption. Defined.

Definition isaprop (X:UU): UU := isofflevel (S 0) X.
```

Other libraries were built on top of *Foundations*.

Founding of the UniMath library

UniMath was founded in spring 2014, by combining three libraries:

- Foundations (Voevodsky)
- RezkCompletion (Ahrens, Kapulkin, Shulman) (started Feb 2013)
- Ktheory (Grayson) (started Oct 2013)

1 The UniMath library of mathematics in univalent style
The language underlying UniMath
The UniMath library

2 Things to do Propositional resizing Future work: Voevodsky's suggestion

The language underlying UniMath, in theory

Type former	Notation	(special case)
Sigma type	$\sum_{x:A} B(x)$	$A \times B$
Product type	$\prod_{x:A} B(x)$	$A \rightarrow B$
Coproduct type	A + B	
Identity type	$a =_A b$	
Universes	$U_o: U_1: U_2: \dots$	
Nat, Bool, 1, 0		

- Definitional η -rules for \sum and \prod
- Axioms: function extensionality, univalence
- Resizing: any proposition lives in U_o

The language underlying UniMath, in theory

Type former	Notation	(special case)
Sigma type	$\sum_{x:A} B(x)$	$A \times B$
Product type	$\prod_{x:A} B(x)$	$A \rightarrow B$
Coproduct type	A + B	
Identity type	$a =_A b$	
Universes	$U_o: U_1: U_2: \dots$	
Nat, Bool, 1, 0		

- Definitional η -rules for \sum and \prod
- Axioms: function extensionality, univalence
- Resizing: any proposition lives in U_o
 Warning: not known to be consistent

The language underlying UniMath, in practice

A subset of the Coq language:

- no record types
- no inductive types
- no match construct

Coq features used to simulate the UniMath language:

- Avoid Coq's Prop for identity type by -indices-matter flag
- η for sums through primitive projections
- Resizing rule enabled by -type-in-type flag

The language underlying UniMath, in practice

A subset of the Coq language:

- no record types
- no inductive types
- no match construct

Coq features used to simulate the UniMath language:

- Avoid Coq's Prop for identity type by -indices-matter flag
- η for sums through primitive projections
- Resizing rule enabled by -type-in-type flag
 Warning: known to be inconsistent

1 The UniMath library of mathematics in univalent style
The language underlying UniMath
The UniMath library

2 Things to do Propositional resizing Future work: Voevodsky's suggestions

Some information on the UniMath library

- ca. 160,000 loc
- More repositories building on top of UniMath
 - TypeTheory (ca. 20,000 loc)
 - largecatmodules (ca. 10,000 loc)
 - SetHITs (ca. 7,000 loc)
- ca. 35 contributors, plus many maintenance contributions from Coq developers
- Distributed under free software license
- Available on https://github.com/UniMath/UniMath

The UniMath library

Organized in 'packages':

- Foundations
- Combinatorics
- Algebra
- Number Systems
- Synthetic Homotopy Theory
- Real Numbers

- · Category Theory
- Homological Algebra
- K-theory
- Topology
- Homological Algebra
- Substitution Systems
- . . .

UniMath: what does it look like?

Demo-we look at:

- the encode-decode method for coproducts
- the proof that the type of types of hlevel *n* is of hlevel *Sn*

The UniMath library of mathematics in univalent style The language underlying UniMath The UniMath library

2 Things to do
Propositional resizing
Future work: Voevodsky'

Future work: Voevodsky's suggestions

The UniMath library of mathematics in univalent style The language underlying UniMath The UniMath library

2 Things to do Propositional resizing

Future work: Voevodsky's suggestions

Summary: Propositional resizing

In idealized UniMath, there is a sequence $U_0: U_1: U_2: U_3: \dots$ of universes.

In a talk at TYPES 2011, Voevodsky suggested a set of **resizing rules**, in particular:

- If type A: U_i is a proposition, then A lives in the lowest universe.
- For any universe U_i , the type $h \operatorname{Prop}(U_i) = \sum_{X:U_i} \operatorname{isaprop}(X)$ lives in the lowest universe.

Weakened versions of those rules—"up to equivalence"—are validated by Voevodsky's simplicial set model.

Propositional resizing axiom

Given $U \leq U'$ and

$$j: hProp U \rightarrow hProp U'$$

postulate

```
rr1ax U U' : @isweq (hProp U) (hProp U') j
```

 Is compatible with Voevodsky's univalent model in simplicial sets and therefore is consistent modulo ZFC.

Propositional resizing rule

 Consistency of these rules with univalent type theory is unknown.

Use of resizing in (idealized) UniMath

Propositional resizing is needed to achieve that

• the propositional truncation of *A*,

$$||A|| := \prod_{P: hProp(U)} (A \to P) \to P$$

lives in the same universe as A

• the set quotient of (X, R) lives in the same universe as $X : U_i$

Note: elements of the quotient are equivalence classes

$$e: X \to \mathsf{hProp}(\mathsf{U}_k)$$

Research problems related to resizing

Show consistency of resizing rules in univalent type theory In the TYPES 2011 talk, Voevodsky sketches a model of resizing rules that does not validate univalence.

Implement a proof assistant with propositional resizing

- In UniMath, resizing is currently achieved by the inconsistent rule U: U
- Dan Grayson is currently working on isolating the uses of U: U into "resizing modules"

The UniMath library of mathematics in univalent style The language underlying UniMath The UniMath library

2 Things to do

Propositional resizing

Future work: Voevodsky's suggestions

Voevodsky's goals for UniMath

In a lecture in July 2017, Voevodsky outlined three goals for the UniMath library:

- Mathematics of syntax and semantics of dependent type theories
- Proof of Milnor's conjecture on Galois cohomology
- Modern theory of geometry and topology of manifolds; in particular, construct a univalent category of smooth manifolds

References

- Voevodsky's emails to Dan Grayson https://groups.google.com/forum/#!topic/ homotopytypetheory/K_4bAZEDRvE
- Voevodsky's library Foundations
 https://github.com/vladimirias/Foundations,
 archived at https://github.com/UniMath/Foundations
- Voevodsky's talk at TYPES 2011
 https://www.math.ias.edu/vladimir/sites/math.
 ias.edu.vladimir/files/2011_Bergen.pdf
- Voevodsky's talk on UniMath in July 2017 https: //www.newton.ac.uk/seminar/20170710113012301