
Models of type theory in univalent mathematics

B. Ahrens, about jww P. LeF. Lumsdaine, V. Voevodsky

Institut de Recherche en Informatique de Toulouse

Université Paul Sabatier

2015�06�30

Outline

1 UniMath: a library of univalent mathematics

2 Formalizing models of type theory in UniMath

Outline

1 UniMath: a library of univalent mathematics

2 Formalizing models of type theory in UniMath

What is UniMath?

• one of several libraries of univalent mathematics

• using the Coq proof assistant (following branch V8.5 atm)

• combines several libraries:
• Foundations by Voevodsky
• RezkCompletion by Ahrens, Kapulkin, Shulman
• Ktheory by Grayson
• (PAdics by Pelayo, Voevodsky, Warren)

• Base for several more libraries:
• Work on substitution systems by Ahrens, Matthes
• Formalization of cubical model by Mörtberg
• Models of type theory by Ahrens, Lumsdaine, Voevodsky
(see later)

What is UniMath?

• Since V8.5beta2: use of vanilla Coq, no patches necessary

• Crucial �ags -indices-matter, -type-in-type

• General philosophy of UniMath: stay within MLTT
fragment of CIC, for kernel:

• no use of records
• no use of type classes
• no use of general inductive declarations given via
Inductive scheme

• Univalence taken as axiom; no HITs

https://github.com/UniMath/UniMath

https://github.com/UniMath/UniMath

Constituent pieces I: Foundations

• Written by Voevodsky, 2009 � today

• approx. 6500loc (but very long ones), 820k chars

Contents

• basic (and less basic) HoTT stu�

• set quotients

• algebraic hierarchy: from monoids to �elds

• naturals, integers, rationals

Constituent pieces II: RezkCompletion

• Written by Ahrens, Kapulkin, Shulman, 2012 � today

• approx. 6000loc, 240k chars

Contents

• (pre)categories, functors, natural transformations,
adjunctions, equivalences

• Rezk completion: from precategories to categories

• some limits

Constituent pieces III: Ktheory

• Written by Grayson, 2013 � 2014

• approx. 5000loc, 260k chars

Contents

• groups by generators and relations, free groups

• abelian groups, group actions, torsors

• de�nition of B(G) and its covering space E(G), proof
(using univalence) that the loop space of B(G) is G

• construction of the circle as B(Z)

Constituent pieces IV: PAdics

• Written by Pelayo, Voevodsky, Warren, 2011 � 2012

• approx. 3000loc, 230k chars

Contents

• stu� about p-adic numbers?

• code not maintained, does not compile with current
Foundations

POST-TALK EDIT: Warren is currently updating PAdics to
the latest version of UniMath. For status info see
https://github.com/UniMath/UniMath.

https://github.com/UniMath/UniMath

Outline

1 UniMath: a library of univalent mathematics

2 Formalizing models of type theory in UniMath

What is a type theory?

What is a type theory?

See Vladimir's talk.

What is a model of type theory?

• �Model�: algebraic structure intended for interpreting
syntax

• Various notions of �model� considered in this talk model a
skeletal type theory without type/term constructors.

• For now, model just type dependency and substitution.

Data modeled in such a model

• contexts and their morphisms

• types and terms in context

• substitution with respect to context morphisms

Notions of �model of type theory�

The zoo of �models of type theory�

• categories with families

• categories with attributes

• contextual categories

• comprehension categories

• type categories

• categories with display maps

• . . .

Notions of �model of type theory�

• In general, a model is a category with extra structure.

• The alternatives di�er in how the various data are
represented, algebraically or categorically

algebraically given by operations satisfying equations

categorically given as objects satisfying universal property

Notions of �model of type theory�

How do they relate to each other?

In classical set-theoretic foundations

For overview see http://ncatlab.org/nlab/show/
categorical+model+of+dependent+types

In univalent foundations

Additional parameters:

• strong vs. weak existence

• two notions of �category� (details later)

entail further bifurcations of those notions

http://ncatlab.org/nlab/show/categorical+model+of+dependent+types
http://ncatlab.org/nlab/show/categorical+model+of+dependent+types

Goals

Goal of this project

• Vary some of these parameters and compare the resulting
notions

• Formalize in UniMath

More speci�cally, comparing means:

1 construct functions between the various types of models

2 prove properties of maps: injectivity, equivalence, . . .

Functions vs. functors

• in set theory functors are the only meaningful way to
compare these notions (constructing adjunctions or
similar): equality is too strict, injectivity of functions would
not be meaningful

• univalent identity in type theory makes injectivity
meaningful as a property of functions between the types
of models

Interlude: (pre)categories in univalent
mathematics

A preprecategory is

• a type O : U of objects

• a dependent type A : O ×O → U of arrows

• id :
∏

(a:O)A(a, a)

• (◦) :
∏

(a,b,c:O)A(a, b)×A(b, c)→ A(a, c)

• axioms postulating equalities of arrows

such that
idtoiso :

∏
a,b:O

(a = b)→ iso(a, b)

is an equivalence.

Interlude: (pre)categories in univalent
mathematics

A preprecategory is

• a type O : U of objects

• a dependent type A : O ×O → Set of arrows
• id :

∏
(a:O)A(a, a)

• (◦) :
∏

(a,b,c:O)A(a, b)×A(b, c)→ A(a, c)

• axioms postulating equalities of arrows

such that
idtoiso :

∏
a,b:O

(a = b)→ iso(a, b)

is an equivalence.

Interlude: (pre)categories in univalent
mathematics

A preprecategory is

• a type O : U of objects

• a dependent type A : O ×O → Set of arrows
• id :

∏
(a:O)A(a, a)

• (◦) :
∏

(a,b,c:O)A(a, b)×A(b, c)→ A(a, c)

• axioms postulating equalities of arrows

such that
idtoiso :

∏
a,b:O

(a = b)→ iso(a, b)

is an equivalence.

Examples of categories

Precategories that are categories:

• hSets

• Groups, rings, . . . (Structure Identity Principle)

• Functor category [C,D], if D is a category

Non-example:

• ** •jj

(indiscrete precategory on two objects)

Rezk completion: from precategories to
categories

• Every category is a precategory

• Conversely, turn a precategory C into a category via �Rezk
completion�, a (homotopy) quotient of C

Intuition behind the Rezk completion

add as many identities between objects a and b as there are
isomorphisms

Rezk completion and models of type
theory

Reminder: notion of model is given by (pre)category with
structure.

Interplay between Rezk completion and structure of model

1 Does a given structure on a precategory C induce a
structure on its Rezk completion?

2 Does the map structure1 → structure2 depend on the
underlying precategory being a category?

Uniqueness of limits in categories

Lemma

In a category, limiting cones are unique up to propositional

equality.

Put di�erently,

in a category, �speci�ed pullbacks� is a property.

Notions of models considered

• Categories with Families

• Comprehension Categories, plus the �split� version

• Categories with Display Maps

A short overview. . .

Categories with Families

A precategory with families is a precategory C with
• for any Γ : C0, a set C(Γ);

• for any Γ : C0 and A : C(Γ), a set C(Γ ` A);

• for any γ : C(Γ′,Γ), a reindexing function
C(Γ)→ C(Γ′), A 7→ A[γ];

• for any γ : C(Γ′,Γ) and A : C(Γ), a function
C(Γ ` A)→ C(Γ ` A[γ]), a 7→ a[γ];

• for any Γ : C0 and A : C(Γ), an object Γ.A and a projection

morphism πA : C(Γ.A,Γ);

• for any Γ : C0 and A : C(Γ), a generic element

ν : C(Γ.A ` A[πA]);

• pairing, corresponding to extension of context morphisms;

• laws . . .

Comprehension Categories
A comprehension precategory is a precategory C with
• for any object Γ : C0, a type C(Γ),

• for any A : C(Γ), an object Γ.A : C0,

• projection morphisms π(Γ,A) : C(Γ.A,Γ),

• for any morphism γ : C(Γ′,Γ), a reindexing function
C(Γ)→ C(Γ′), A 7→ A[γ],

• for any γ : C(Γ′,Γ) and A : C(Γ), a morphism
q(γ,A) : C(Γ′.A[γ],Γ.A),

• for any γ : C(Γ′,Γ) and A : C(Γ),

Γ′.A[γ]
q(γ,A)

//

π(Γ′,A[γ])

��

Γ.A

π(Γ,A)

��

Γ′
γ

// Γ

• for any γ : C(Γ′,Γ) and A : C(Γ), the above square is a
pullback.

Split comprehension precategories

A comprehension category as above is split if

• C(Γ) is a set for each Γ,

• reindexing (of types) is functorial

• q is functorial

POST-TALK EDIT: what is called �comprehension category�
here should really be called �type category� after A. Pitts,
Categorical Logic, 2000, Def. 6.3.3. This has since been renamed
in our development.

Categories with Display Maps

A precategory with display maps is given by a precategory C
with

• for any ∆,Γ : C0, a subtype DM∆,Γ : C(∆,Γ)→ Prop

• DM is closed under isomorphism (in the arrow
precategory), and

• display maps have (speci�ed) pullbacks along all maps; and
they are again display maps.

Conjectural relation between models

CwF
f

//

I
��

R

FF

a

j

**

splitCompC g
//

I
��

R

HH

a

CompC

��

h
// CwDM

I
��

R

FF

ak

ii

PreCwF
f
// splitCompPreC g

// CompPreC PreCwDM

k

ii

• Maps f, g, h, j, k do not change the underlying (pre)category

• g is injective (forgets splitness)

• j = h ◦ g ◦ f
• Conjecture: f is an equivalence

• Conjecture: left adjoints R to inclusions I exist

Current status of the project

Completed

• Construction of maps between di�erent structures

Not completed

• Proofs of properties of constructed maps

• Compatibility of structures with Rezk completion

Details about the constructed maps

• All the maps constructed between di�erent structures leave
the underlying (pre)category unchanged

• Maps CwF→ CwDM and CompC→ CwDM use the fact
that �speci�ed pullbacks� is a property in categories

Details about the formalization

• 2500loc

• needs -type-in-type

Rewriting by hand:

• rewrite lemma mostly fails

• instead, use etransitivity; isolate subterm; apply lemma

• side e�ect: produces nice identity terms

• possible to automate (proof-relevant rewriting)?

Thanks for your attention.

Details about the formalization

• 2500loc

• needs -type-in-type

Rewriting by hand:

• rewrite lemma mostly fails

• instead, use etransitivity; isolate subterm; apply lemma

• side e�ect: produces nice identity terms

• possible to automate (proof-relevant rewriting)?

Thanks for your attention.

	UniMath: a library of univalent mathematics
	Formalizing models of type theory in UniMath

