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Harrison, Formalized Mathematics (1996)

. . . category theory [is] notoriously hard to formalize in
any kind of system . . .

• I did have a painful experience trying to formalize category
theory in HOL Light.

• In dependent type theory, such a formalization is feasible;
witnessed by various libraries created between then and
now.



In this talk

• give an overview of category theory in extensional and
intensional type theory

• discuss a definition of categories in Univalent Foundations,
an intensional type theory with extensional features



What is a category in set theory?

Definition
A category is given by
• a set O of objects
• a set A of arrows (or morphisms)
• two maps

source, target : A→ O

. . .

Say f : a→ b for f ∈ A with source(f ) = a and target(f ) = b.



What is a category in set theory?

Definition (contd.)

. . .
• composition of composable arrows

f : a→ b
g : b → c

g ◦ f : a→ c
• for any object a ∈ O, an identity arrow

a ∈ O
id(a) : a→ a

• satisfying some axioms similar to monoid axioms



Why formalizing category theory in (ML) type theory?

Dyckhoff: Category theory as an extension of MLTT (1985)

• Curry-Howard is conceptually clean
• category theory is inherently typed
• category theory is inherently dependently typed
• dependent functions allow natural implementation of
composition, definition of pullbacks etc.

• hierarchy of universes allows for a “category of categories”
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A definition of category in Nuprl

From Altucher & Panangaden: A Mechanically Assisted
Constructive Proof in Category Theory (1990)

Category ==
Obj: U2

# Mor: (Obj # Obj) -> U1
# Id : (A:Obj -> Mor(A,A))
# o : (A:Obj -> B:Obj -> C:Obj -> Mor(A,B)

-> Mor(B,C) -> Mor(A,C))

# forall A,B:Obj.forall f:Mor(A,B).
f o Id(A) {A,A,B} = f in Mor(A,B)

# forall A,B:Obj.forall g:Mor(B,A).
Id(A) o g {B,A,A} = g in Mor(B,A)

# forall A,B,C,D:Obj.forall f:Mor(C,D).
forall g:Mor(B,C). forall h:Mor(A,B).

((f o g {B,C,D}) o h {A,B,D}) =
(f o (g o h {A,B,C}) {A,C,D}) in Mor(A,D)



A definition of category in Nuprl

From Altucher & Panangaden: A Mechanically Assisted
Constructive Proof in Category Theory (1990)

Category ==
Obj: U2

# Mor: (Obj # Obj) -> U1
# Id : (A:Obj -> Mor(A,A))
# o : (A:Obj -> B:Obj -> C:Obj -> Mor(A,B)

-> Mor(B,C) -> Mor(A,C))

# forall A,B:Obj.forall f:Mor(A,B).
f o Id(A) {A,A,B} = f in Mor(A,B)

# forall A,B:Obj.forall g:Mor(B,A).
Id(A) o g {B,A,A} = g in Mor(B,A)

# forall A,B,C,D:Obj.forall f:Mor(C,D).
forall g:Mor(B,C). forall h:Mor(A,B).

((f o g {B,C,D}) o h {A,B,D}) =
(f o (g o h {A,B,C}) {A,C,D}) in Mor(A,D)



Sanity check: a category of sets/types

Altucher & Panangaden ’90:
For instance we have proved the goal "Category" using
U1 (the universe of small types in Nuprl) to represent
the objects and the function space between two types to
represent the morphisms. Identity and composition are
what you would expect and the axioms were easily
proved.

Category ==
Obj: U2

# Mor: (Obj # Obj) -> U1



Where do morphisms live?

• Category theory requires a category of sets (or types)
where morphisms live.

• extensional universe of types behaves like a category (of
sets)

• intensional universe does not, e.g.,
cannot prove

f ◦ id = f

but only
∀x : A, (f ◦ id)(x) = f (x)

for a function f : A→ B



Equality of morphisms in Constructions

Coquand & Huet: Constructions: A higher-order proof system
for mechanizing mathematics (1985)
Equality given by Leibniz principle:

a = b : A := ∀P : A→ U,P(a)→ P(b)

About an axiomatization of categories using Leibniz equality:
This definition is not quite general enough, since it
assumes intensional equality for morphisms. A more
general definition would replace the equality = by a
relation E postulated to be an equivalence relation
compatible with composition.
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Setoids for hom-objects

Definition
A setoid is given by
• a type A
• an equivalence relation R : A→ A→ U

In type theory:

Setoid :=
∑
(A:U)

∑
(R:A→A→U)

isEquivRel(R)



Category theory in intensional type theory

Category ==
Obj: U2

# Mor: (Obj # Obj) -> Setoid
# Id : (A:Obj -> Mor(A,A))
# o : (A:Obj -> B:Obj -> C:Obj -> Mor(A,B)

-> Mor(B,C) -> Mor(A,C))
# o_R: <composition is compatible with R>
# forall A,B:Obj.forall f:Mor(A,B).

f o Id(A) {A,A,B} R f in Mor(A,B)
# forall A,B:Obj.forall g:Mor(B,A).

Id(A) o g {B,A,A} R g in Mor(B,A)
# forall A,B,C,D:Obj.forall f:Mor(C,D).

forall g:Mor(B,C). forall h:Mor(A,B).
((f o g {B,C,D}) o h {A,B,D}) R
(f o (g o h {A,B,C}) {A,C,D}) in Mor(A,D)



Sanity check: setoids form a category

Category of setoids

The cartesian closed category of setoids is a category for
aforementioned definition.

• Aczel ’93: Galois: A Theory Development Project
• Dybjer & Gaspes ’94: Implementing a category of sets in
ALF

• Huet & Saïbi: working towards ConCaT (’98)

Nowadays many libraries of basic category theory in Coq and
Agda use setoids.



How to do category theory in Univalent Foundations?

Univalent Foundations is an intensional type theory with
extensional features.

Question

What is a good definition of category in Univalent Foundations?
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Univalent Foundations

What are the Univalent Foundations?

• Intensional Martin-Löf Type Theory
 Types as Spaces interpretation
+ Voevodsky’s Univalence Axiom



Martin-Löf TT and its Homotopy Interpretation

Type theory Notation Interpretation

Inhabitant a : A a is a point in space A

Dependent type x : A ` B(x) . . .

Sigma type
∑

x :A B(x) . . .

Product type
∏

x :A B(x) . . .

Identity type IdA(a, b) space of paths p : a b



Interpretation: identity type as path space

Terms p, q : IdA(a, b) are interpreted as paths p, q : a b

A

a
b

p

q

Mixing syntax and semantics

• Call a term p : Id(a, b) a “path from a to b”, write p : a b
• Say a and b are homotopic if there is a path p : a b.



The homotopy interpretation of identity types

Interpretation of the operations on paths:

Type theory Interpretation Notation

“reflexivity” constant path on a refl(a)

“symmetry” path reversal p−1

“transitivity” path concatenation p ? q

higher identity type paths between paths p +3 q



Univalence vs. Axiom K

• Univalence is incompatible with the assumption that any
two terms of identity type are identical (Axiom K).

• That is, identities between identities matter.

• However, for some types, one can prove K.
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Propositions as some types

Definition (Proposition in UF)

A type A is a proposition if all its inhabitants are homotopic,
ie. if one can construct a function of type

isProp(A) :=
∏
x :A

∏
y :A

x  y .

• “Being a proposition” is an internal notion.

• “Being a proposition” is a proposition, ie. one can prove

isProp(isProp(A))

• Intuitively, a proposition is either empty or a singleton.
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∏
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Sets in Univalent Foundations

Definition (Sets in UF)

The type A is a set if for any x , y : A the type x  y is a
proposition,

isSet(A) :=
∏

x ,y :A

isProp(x  y)

Define
Set :=

∑
A:U

isSet(A)

• Points of a set are identical in a unique way, if they are.
• Sets are precisely those types which satisfy UIP / Axiom K.
• Sets correspond to discrete spaces.
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About the use of the word “unique”

Definition
We call the point a : A unique if any point x : A is homotopic
to a, ie. if we can construct a function of type∏

x :A

x  a

A type A with a unique point a : A is called “contractible”:

Definition
We call A contractible if we can construct a term of type

isContr(A) :=
∑
(a:A)

∏
(x :A)

x  a
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Isomorphism of sets. . .

Definition
Let A,B : Set be sets. The map f : A→ B is an isomorphism
if there are
•

g : B → A

•
η :
∏
a:A

g
(
f (a)

)
 a ε :

∏
b:B

f
(
g(b)

)
 b

That is

isIso(f ) :=
∑

g :B→A

(∏
a:A

g
(
f (a)

)
 a

)
×

(∏
b:B

. . .

)
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Isomorphism of sets

Lemma
isIso(f ) is a proposition; in particular, an inverse of f is unique.

Definition (Type of isomorphisms from A to B)

Iso(A,B) :=
∑

f :A→B

isIso(f )



The Univalence Axiom for sets

Definition (From paths to isomorphisms)

idtoiso :
∏

A,B:Set

(A B)→ Iso(A,B)

idtoisoA,A(refl(A)) :≡ (λxA.x ,_)

Univalence Axiom for sets

univalence :
∏

A,B:Set

isIso(idtoisoA,B)

In particular, Univalence gives a map backwards:

isotoidA,B : Iso(A,B)→ (A B)
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Consequences of Univalence

• Propositional extensionality

(P ↔ Q)→ (P  Q)

• Function extensionality:(∏
x :A

f (x) g(x)

)
→ (f  g)

and its dependent variant

• Quotient types exist
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Categories in Univalent Foundations — Take I

A naïve definition of categories

A category C is given by
• a type C0 of objects
• for any a, b : C0, a type C(a, b) of morphisms
• operations: identity id & composition (◦)
• axioms: unitality & associativity

unital :
∏

a,b:C0,f :C(a,b)

(idb ◦ f  f )× (f ◦ ida  f )
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Where should morphisms live?

• Types (of a fixed universe) and functions between them
form a category.

• But the definition is wrong for other reasons:
categorical axioms should be properties

• Categorical axioms speak about identities of morphisms.
• If morphisms form a set, then identities between them are
propositions.



Categories in Univalent Foundations — Take II

Definition (Category in UF)

A category C is given by
• a type C0 of objects

• for any a, b : C0, a set C(a, b) of morphisms
• operations: identity & composition
• axioms

• Functions between sets form a set
 we can define a category of sets



Categories in Univalent Foundations — Take II

Definition (Category in UF)

A category C is given by
• a type C0 of objects

• for any a, b : C0, a set C(a, b) of morphisms
• operations: identity & composition
• axioms
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A closer look at the category of sets

The Univalence Axiom for sets A and B says:

idtoisoA,B : (A B)→ Iso(A,B)

is an isomorphism, i.e.

In the category of sets

identities of objects ∼= isomorphisms of objects

Motivates adding this as additional axiom to the definition of
category. . .



Isomorphism in a category

Definition (Isomorphism in a category)

A morphism f : C(a, b) is an isomorphism if there are
•

g : C(b, a)

•
η : g ◦ f  ida ε : f ◦ g  idb

i.e.

isIso(f ) :=
∑

g :C(b,a)

(
(g ◦ f  ida)× (f ◦ g  idb)

)

For the category of sets, this definition of isomorphism is
equivalent to the one given above (using FE).
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Isomorphism in a category II

Lemma
For any f : C(a, b), the type isIso(f ) is a proposition.

Definition (The type of isomorphisms)

Iso(a, b) :=
∑

f :C(a,b)

isIso(f )



From paths to isomorphisms

Definition (Univalent category, Hofmann & Streicher ’98)

For objects a, b : C0 define

idtoisoa,b : (a b)→ Iso(a, b)

refl(a) 7→ ida

Call the category C univalent if, for any objects a, b : C0,

idtoisoa,b : (a b)→ Iso(a, b)

is an isomorphism of sets.

• In a univalent category, isomorphic objects are equal.

• “C is univalent” is a proposition.
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Further definitions

• Functors between (univalent) categories are defined as
usual.

• Same for natural transformations.
• “Equivalence” means “adjoint equivalence” in the following.



Examples of univalent categories

• Set (follows from the Univalence Axiom)

• categories of algebraic structures (groups, rings,...)
 made precise by the Structure Identity Principle (Aczel,

Coquand, Danielsson)

• full subcategories of univalent categories

• functor category DC , if D is univalent



Some more examples of univalent categories

• A preorder, considered as a category, is univalent iff it is
antisymmetric.

• Suppose X with isSet(x  y) for any x , y : X , then there is
a univalent category with X as objects and
hom(x , y) := (x  y).

• If C is univalent, then the category of cones of shape
F : J → C is.



Non-univalent categories

•
• ** •jj

• more generally, any chaotic category C with C(x , y) := 1
unless C0 is contractible

• any chaotic category C with an object c : C0 is equivalent
to the terminal category 1 := •
 a category can be equivalent to a univalent one without

being univalent itself



Extensionality for univalent categories

Theorem (A., Kapulkin, Shulman; conjectured by Hofmann &
Streicher ’98)

For univalent categories C and D, the following are equivalent
(as types in UF).

Identity C  D
Isomorphism C ∼= D
Equivalence C ' D

Consequence

Every property of univalent categories definable in UF is
invariant under equivalence.
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Rezk completion

• “Being univalent” is a proposition
 Inclusion from univalent categories to categories

Theorem (A., Kapulkin, Shulman)

The inclusion of univalent categories into categories has a left
adjoint (in bicategorical sense),

C 7→ Ĉ, the Rezk completion of C .

Named after C. Rezk (A model for the homotopy theory of
homotopy theory (2001))
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Rezk completion II

Any functor F : C → D with D univalent factors uniquely:

C ηC //

∀F

%%

Ĉ

∃!

��

D (univalent)

The functor ηC is the unit of the adjunction; it is
• fully faithful and
• essentially surjective.



Construction of the Rezk completion

• Ĉ := full image subcat. of SetC
op

of Yoneda embedding
• Ĉ is univalent

• ηC : C → Ĉ := the Yoneda embedding (into Ĉ):
• fully faithful
• essentially surjective (by definition)

• precomposition _ ◦ H : CB → CA is an equivalence—and
hence an isomorphism—of categories if

• H is essentially surjective and fully faithful
• C is univalent

• the object function thus is an isomorphism of types

_ ◦ H : (CB)0 → (CA)0



Special case of Rezk completion: Quotienting

Consider a setoid as a category:

Theorem (Univalent Foundations admits quotients)

Any map f : S → R such that s ∼ s ′ =⇒ f (s) f (s ′) factors
uniquely via Ŝ :

S
ηS //

∀

��

Ŝ

∃!

��

R

More direct construction of set-level quotients by Voevodsky:
“type of equivalence classes”



Another example: the classifying space of a group

• Consider group G as category with one object

• B(G ) := classifying space, ie. the space such that

Ω(B(G )) = G

• Construction of B(G ) as space of torsors is the Rezk
completion

• Directly formalized in UF by Dan Grayson



Implementation in Coq

Rezk completion checked in Coq+UA+Type:Type

• approx. 4000 lines of code
• based on Voevodsky’s library “Foundations”

Wishlist for proof assistant

• Tactics for “relevant rewriting”
• Facilities for handling of (iterated) Sigma types and
identities between dependent pairs



Future work

• (univalent) enriched categories
• higher categories via enrichment
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