Displayed categories

Benedikt Ahrens 1

joint work with Peter LeFanu Lumsdaine2

1Inria, France
2Stockholm University
Outline

1. Goals and background
2. Displayed category theory
3. Fibrations and comprehension categories
4. Univalence
5. Creation of limits
Outline

1. Goals and background
2. Displayed category theory
3. Fibrations and comprehension categories
4. Univalence
5. Creation of limits
Open problem: Initiality conjecture for dependently typed theories

1. Develop notion of ‘signature’ for type theories
2. Construct initial model for any signature

Project with Peter Lumsdaine and Vladimir Voevodsky: *Comparing categorical structures for type theory*

- Categories with families
- Type categories
- Categories with display maps
- Comprehension categories

and formalize results in (univalent) type theory.

Displayed categories help with two challenges encountered in this project.
Displayed categories help with two challenges:

Avoid reasoning about equality of objects of categories

Equality of objects used in classical formulations of several concepts:
- (Grothendieck) fibrations
- Creation of limits

Build categories of complex structures step-wise
- Toy example: category of groups from category of sets + extra structure
- Specifically: mathematical status for extra structure
Logical setting

<table>
<thead>
<tr>
<th>Type theory with different possible interpretations</th>
</tr>
</thead>
<tbody>
<tr>
<td>naïve: types interpreted as sets</td>
</tr>
<tr>
<td>univalent: types interpreted as simplicial sets</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Some issues and results trivialize in naïve interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Transport along equalities</td>
</tr>
<tr>
<td>• Results on univalent categories</td>
</tr>
</tbody>
</table>
Type-theoretical background

- Type theory with Σ, Π, $=, o, 1, 2, N, U$
- Type A is **contractible** if has a unique inhabitant
- Type A is a **proposition** if all inhabitants are equal
- Type A is a **set** if all its identity types $a = a'$ are propositions

Results do not rely on univalence or Axiom K
Formalization

- Many of the results formalized, based on the UniMath library
- Available on https://github.com/UniMath/TypeTheory
- Ca. 5000 loc
A category \mathcal{C} is

- a type \mathcal{C}_o of objects
- for any two objects $a, b : \mathcal{C}_o$, a **set** $a \to b$ of arrows
- for any $a : \mathcal{C}_o$, an arrow $1_a : a \to a$
- composition: $(a \to b) \times (b \to c) \to (a \to c)$, denoted $f \cdot g$
- axioms postulating identities of arrows
A **univalent** category \mathcal{C} is

- a type \mathcal{C}_o of objects
- for any two objects $a, b : \mathcal{C}_o$, a **set** $a \to b$ of arrows
- for any $a : \mathcal{C}_o$, an arrow $1_a : a \to a$
- composition: $(a \to b) \times (b \to c) \to (a \to c)$, denoted $f \cdot g$
- axioms postulating identities of arrows
- such that the map

$$\text{idtoiso} : \prod_{a,b : \mathcal{C}_o} ((a = b) \to \text{Iso}(a, b))$$

is an equivalence ‘pointwise’, i.e., for any $a, b : \mathcal{C}_o$,

$$\text{idtoiso}_{a,b} : a = b \sim \text{Iso}(a, b)$$
1. Goals and background

2. Displayed category theory

3. Fibrations and comprehension categories

4. Univalence

5. Creation of limits
Given a category \mathcal{C}, a **displayed category** \mathcal{D} *over* \mathcal{C} consists of

- for each $c : \mathcal{C}$, a type \mathcal{D}_c
- for each $f : a \to b$ of \mathcal{C} and $x : \mathcal{D}_a$ and $y : \mathcal{D}_b$, a **set** $\text{hom}_f(x,y)$
- for each $c : \mathcal{C}$ and $x : \mathcal{D}_c$, a morphism $1_x : \text{hom}_{1_c}(x,x)$
- for all $f : a \to b$ and $g : b \to c$ in \mathcal{C} and $x : \mathcal{D}_a$ and $y : \mathcal{D}_b$ and $z : \mathcal{D}_c$, a function

$$ (\cdot) : \text{hom}_f(x,y) \times \text{hom}_g(y,z) \to \text{hom}_{f \cdot g}(x,z), $$

- denoted by $(\tilde{f}, \tilde{g}) \mapsto \tilde{f} \cdot \tilde{g} : \text{hom}_{f \cdot g}(x,z)$
- **laws**—well-typed modulo axioms of \mathcal{C}
Total category of a displayed category

The total category $\int \mathcal{D}$ of \mathcal{D} over \mathcal{C}

- objects are pairs (a, x) where $a : \mathcal{C}$ and $x : \mathcal{D}_a$
- maps $(a, x) \to (b, y)$ are pairs (f, \tilde{f}) where $f : a \to b$ and $\tilde{f} : \text{hom}_f(x, y)$

Forgetful functor

$$\pi_1^\mathcal{D} : \int \mathcal{D} \to \mathcal{C}$$

Displayed categories over \mathcal{C} are the same as ‘a category and a functor into \mathcal{C}’.
Examples

The **category of groups** is the total category of the displayed category grp, over set:

- $\text{grp}_X :=$ set of group structures on the set X
- for a function $f : X \to Y$ and group structures (μ, e) on X and (μ', e') on Y,

$$\text{hom}_f((\mu, e), (\mu', e')) :=$$

f is a homomorphism with respect to $(\mu, e), (\mu', e')$

Similarly for **category of topological spaces**.
More examples

- Any category is displayed over 1.
- Given a predicate $P : \mathcal{C}_o \to \text{type}$, setting $\mathcal{D}_c := P(c)$ and $\text{hom}_f(x, y) = 1$ yields

$$\int \mathcal{D} = \text{full subcategory spanned by } P$$

- If every displayed hom-set $\text{hom}_f(x, y)$ of \mathcal{D} is a proposition (inhabited, contractible) then $\pi_1 : \int \mathcal{D} \to \mathcal{C}$ is faithful (full, fully faithful).
- Total category of displayed (co)slice category is arrow category

$$\mathcal{C} \rightarrow \simeq \int_{c : \mathcal{C}} \mathcal{C} / c \simeq \int_{c : \mathcal{C}} c \backslash \mathcal{C}$$

but the π_1’s are different.
Displayed functors

Let $F : \mathcal{C} \to \mathcal{C}'$ be a functor, and \mathcal{D} over \mathcal{C} and \mathcal{D}' over \mathcal{C}'. A (displayed) functor G from \mathcal{D} to \mathcal{D}' over F consists of:

- for each $c : \mathcal{C}$, a map
 \[G_c : \mathcal{D}_c \to \mathcal{D}'_{Fc} \]

- for each $f : c \to c'$ in \mathcal{C}, a map
 \[\text{hom}_f(x, y) \to \text{hom}_{Ff}(Gx, Gy) \]

- dependent analogues of the usual functor laws

Induces total functor $\int G : \int \mathcal{D} \to \int \mathcal{D}'$ commuting with the forgetful functors.
Displayed X over X in the base, inducing X of total categories

For X being

- natural transformations
- adjunctions
- equivalences

In particular,

- displayed category of displayed functors from \mathcal{D} to \mathcal{D}' over category of functors from \mathcal{C} to \mathcal{C}'
Fibre categories

Given \mathcal{D} over \mathcal{C} and c an object of \mathcal{C}, define fibre category \mathcal{D}_c

- $(\mathcal{D}_c)_0 := \mathcal{D}_c$
- $\text{hom}(x,y) := \text{hom}_{1c}(x,y)$

But: displayed X do not generally restrict to X on fibres, requires well-behaved displayed category \mathcal{D}
1. Goals and background

2. Displayed category theory

3. Fibrations and comprehension categories

4. Univalence

5. Creation of limits
Fibrations

Definition (cartesian lift, classically)
Given $F : \mathcal{D} \to \mathcal{C}$ and $f : c' \to c$ in \mathcal{C} and $d : \mathcal{D}_0$ such that $Fd = c$, a cartesian lift of (f, d) is an object $d' : \mathcal{D}_0$ with $Fd' = c'$ and a cartesian map $f' : d' \to d$ with $Ff' = f$.

Definition (cartesian lift in terms of displayed categories)
Given \mathcal{D} a displayed category over \mathcal{C} and $f : c' \to c$ in \mathcal{C} and $d : \mathcal{D}_c$, a cartesian lift of (f, d) is an object $d' : \mathcal{D}_c$ and a cartesian map $\bar{f} : \text{hom}_f(d', d)$.

A **fibration** is a displayed category with a cartesian lift for any $f : c' \to c$ and $d : \mathcal{D}_c$.
Comprehension categories

Definition (comprehension category, classically)

\[
\begin{array}{ccc}
\mathcal{E} & \xrightarrow{\chi} & \mathcal{C} \\
\downarrow{p} & & \downarrow{\text{cod}} \\
\mathcal{C} & \rightarrow & \mathcal{C}
\end{array}
\]
commuting strictly

Definition (comprehension category via displayed categories)

• a fibration (in particular, displayed category) \(\mathcal{T} \) over \(\mathcal{C} \)
• a displayed functor \(\mathcal{T} \to \mathcal{C}/- \) over identity functor on \(\mathcal{C} \)

Induces a strictly commuting triangle of functors

\[
\begin{array}{ccc}
\int \mathcal{T} & \xrightarrow{\chi} & \int_{c: \mathcal{C}} \mathcal{C}/c \\
\downarrow{\pi_1} & & \downarrow{\pi_1} \\
\mathcal{C} & \rightarrow & \mathcal{C}
\end{array}
\]
Univalent displayed categories

• Given \mathcal{D} over \mathcal{C} and $i : c \cong c'$ in \mathcal{C}, write $\text{Iso}_i(d, d')$ for type of displayed isomorphisms
• For $e : c = c'$ and $d : \mathcal{D}_c$ and $d' : \mathcal{D}_{c'}$,

$$\text{idtoiso}_{e,d,d'} : (d =_e d') \to \text{Iso}_{\text{idtoiso}(e)}(d, d')$$

• Call \mathcal{D} (displayedly) univalent if $\text{idtoiso}_{e,d,d'}$ is an equivalence for all e, d, d'.

Lemma

\mathcal{D} displayedly univalent iff all fibre categories \mathcal{D}_c univalent
Structure Identity Principle

Theorem

Given \mathcal{D} over \mathcal{C}, if \mathcal{C} is univalent and \mathcal{D} is (displayedly) univalent, then $\int \mathcal{D}$ is univalent.

- Gives a modular way to show that categories of complicated structures are univalent.
- Structure Identity Principle (Aczel, Coquand & Danielsson) is a special case.
Outline

1. Goals and background
2. Displayed category theory
3. Fibrations and comprehension categories
4. Univalence
5. Creation of limits
Creation of limits

Definition (classically)

A functor $F : \mathcal{A} \to \mathcal{B}$ creates limits of shape I if for any diagram $D : I \to \mathcal{A}$

- for any limit cone $C : B \to FD$ on diagram FD there is a unique cone $C' : A \to D$ such that $F(C') = C$
- C' is limit cone for D

Definition (in terms of displayed categories)

Let \mathcal{D} be a displayed category over \mathcal{C} and I a category. We say that \mathcal{D} creates limits of shape I if . . .

A displayed category \mathcal{D} over a category \mathcal{C} creates limits (of shape I) if and only the functor $\pi_1^\mathcal{D} : \int \mathcal{D} \to \mathcal{C}$ creates limits (of shape I) in the classical sense.
Lemma

Suppose the category \(\mathcal{C} \) has limits of shape \(I \), and the displayed category \(\mathcal{D} \) over \(\mathcal{C} \) creates limits of shape \(I \). Then \(\int \mathcal{D} \) has all such limits, and \(\pi_1^{\mathcal{D}} : \int \mathcal{D} \to \mathcal{C} \) preserves them.

Examples

- Given \(F : \mathcal{C} \to \mathcal{C} \), the displayed category of \(F \)-algebras over \(\mathcal{C} \) creates limits. Same for monad algebras.
- The displayed category of groups over sets creates limits.
Future work

• Develop notion of *displayed limit* encompassing and generalizing the creation of limits
• Assemble displayed categories into a *displayed bicategory over the bicategory of categories*
• Displayed categories form a sort of 2-dimensional ‘category with display maps’, with displayed categories over \mathcal{C} being the ‘types in context \mathcal{C}’ \rightsquigarrow directed type theory
Future work

• Develop notion of *displayed limit* encompassing and generalizing the creation of limits
• Assemble displayed categories into a *displayed bicategory over the bicategory of categories*
• Displayed categories form a sort of 2-dimensional ‘category with display maps’, with displayed categories over \mathcal{C} being the ‘types in context \mathcal{C}’ \rightsquigarrow directed type theory

Thanks for your attention!