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Initial semantics

Methodology for defining/characterizing a language:

1. Introduce a notion of signature.

2. Construct an associated notion of model. Such models should
form a category.

3. Define the syntax generated by a signature to be its initial
model, when it exists.

4. Find a satisfactory sufficient condition for a signature to
generate a syntax.

From initiality one can derive a recursion principle for defining
maps out of the syntax.



In this talk

• Signature for untyped languages with equations
• Model of a signature
• Some sufficient conditions for signatures to generate a syntax
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A very simple datatype

datatype Nat = -- inductive datatype
| 0 -- 0 : Nat
| S Nat -- S : Nat -> Nat

• A model of the natural numbers is any triple (X,x,s) with x:X
and s:X -> X

• A model (X,x,s) specifies function rec x s : Nat -> X

rec : X -> (X -> X) -> (Nat -> X)
rec x s 0 = x
rec x s (S n) = s (rec x s n)

• rec x s : Nat -> X is structure-preserving: preserves the
chosen element and endomorphism on each side



Initiality for natural numbers

Theorem (Initiality for natural numbers)
For any model (X , x , s) of natural numbers there is exactly one
structure-preserving map

(Nat, 0, S)→ (X , x , s)

That is, the requirement of preserving structure specifies that map
uniquely.

Theorem (Reformulated in category theory)
(Nat, 0, S) is the initial object in the category of models of the natural
numbers.



An ubiquitous datatype

datatype list A = -- lists over type A
| nil -- nil : list A
| cons A (list A) -- cons : A -> list A -> list A

• A model of lists over A is a triple (X,n,c) with n:X and
c:A -> X -> X

• Any model gives rise to a structure-preserving function

fold : X -> (A -> X -> X) -> (list A -> X)
...



Initiality for lists

Theorem (Initiality for lists over A)
For any model (X , n, c) of lists over A there is exactly one
structure-preserving map

(list(A),nil, cons)→ (X , n, c)

That is, the requirement of preserving structure specifies that map
uniquely.



Why is Initiality useful?

fold takes a model as input and returns a function from the type
of lists to the model.

Use of fold is preferred over writing recursive functions by pattern
matching oneself:
• Recursion encapsulated in the definition of fold
• Abstracts away from implementation details
• Fusion laws can be used for compiler optimizations

Question
Programming languages are just complicated inductive datatypes?!
Can we get a fold operator for programming languages?
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How to specify the lambda calculus

1.
t, u ::= x | app(t, u) | λx .t

plus information about binding of variables

2.
x ∈ X

X ` var(x)
X ` t X ` u

X ` app(t, u)
X + 1 ` t

X ` abs(t)

What kind of mathematical object is the lambda calculus?



Lambda calculus as a functor

Definition (Model of Lambda Calculus)
• objects: quadruples

F : Set→ Set
var : 1⇒ F

app : F × F ⇒ F

abs : F ◦ option⇒ F

• morphisms: . . .

Definition (preliminary)
The lambda calculus (LC,var,app,abs) is the initial object in that
category.



What about substitution?

Using Mendler Recursion, can define

substX ,Y : LC(X )× (X → LC(Y ))→ LC(Y )

from initiality.1

Proposition
(LC,var, subst) is a monad on sets.

Question
Are app and abs monad morphisms?

Exercise
Show that abs : LC ◦ option→ LC is not a monad morphism.

1see, e.g., [Ahrens, Matthes, Mörtberg, “From signatures to monads in
UniMath”]
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Application and abstraction

app : LC× LC→ LC
abs : LC ◦ option→ LC

3 natural transformations

7 monad morphisms

3 morphism of modules over monad LC

Definition
Given monad R on sets, a module M over R is a

1. function M : Set→ Set
2. family of functions substX ,Y : M(X )× (X → RY )→ M(Y )

satisfying two axioms



Examples of modules

Given monad R, have modules
• R
• R× R
• R ◦ option



Module morphisms

Definition
Given modules M , N over monad R, a morphism from M to N is
• a nat. transformation τ : M → N
• for any f : X → R(Y ),

M(X ) τ //

substM ( f )
��

N(X )

substN ( f )
��

M(Y ) τ // N(Y )

  category Mod(R) of modules over monad R

app and abs are module morphisms:

subst(app(t, u))( f ) = app
�

subst(t)( f ), subst(u)( f )
�

subst(abs(t))( f ) = abs
�

subst(t)(↑ f )
�



Summary of the lambda calculus

The lambda calculus is a triple (LC,app,abs),
1. monad LC : Set→ Set
2. module morphisms over monad LC,

app : LC× LC→ LC
abs : LC ◦ option→ LC

Definition
A model of LC is given by a triple (R,app,abs)

1. monad R : Set→ Set
2. module morphisms over monad R,

app : R× R→ R

abs : R ◦ option→ R



Category of models of LC

Definition
Given two models (R,app,abs) and (S,app,abs) of LC, a morphism
of models is a monad morphism f : R→ S commuting with app
and abs.

Theorem (Hirschowitz & Maggesi)
(LC,app,abs) is initial in the category of models.
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What specifies the lambda calculus

Model of LC:

1. monad R

2. morphism of modules (R× R) + (R ◦ option) −→ R

The data specific to the lambda calculus:

R 7→ (R× R) + (R ◦ option)

Definition
Signature Σ is a section to π:

∫

R Mod(R)

π

��

Mon

Σ

FF



Models of a signature

Definition
A model of Σ is a pair of

1. a monad R

2. a morphism Σ(R) −→ R of R-modules
(a.k.a. an action of Σ in R)

  category MonΣ of models of Σ

Definition

Call Σ representable if MonΣ has an initial object.



Examples of signatures

Hypotheses On objects Name

R 7→ R Θ

F functor, Σ signature R 7→ F ·Σ(R) F ·Σ

R 7→ 1R 1

Σ, Ψ signatures R 7→ Σ(R)×Ψ(R) Σ×Ψ

Σ, Ψ signatures R 7→ Σ(R) +Ψ(R) Σ+Ψ

R 7→ R′ := R ◦ option Θ′

n ∈ N R 7→ R(n) Θ(n)

(a) = (a1, . . . , an) ∈ Nn R 7→ R(a) = R(a1) × . . .× R(an) Θ(a)

Definition (Signatures are called)

elementary of the form Θ(a)

algebraic coproduct of elementary, e.g., ΣLC := Θ×Θ+Θ′



Not all signatures are representable

Non-example
Let P : Set→ Set denote the powerset functor. The signature
P ·Θ associates, to any monad R, the module P · R that sends a
set X to the powerset P (RX ) of RX .
This signature is not representable.

Goal
Identify sufficient conditions for signatures to be representable.



Algebraic signatures

Theorem (Hirschowitz & Maggesi)
Algebraic signatures are representable.

Earlier variants of this theorem with essentially the same notion of
signature by Fiore, Plotkin & Turi, by Gabbay & Pitts, by Hofmann,
each using a different notion of model.
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Category of signatures

Definition
Given signatures Σ and Ψ, a morphism Σ→ Ψ of signatures is a
natural transformation that is the identity when postcomposed
with

∫

Mod→Mon.
  category Sig of signatures

Proposition
Sig is cocomplete.



Modularity
Given a pushout diagram of representable signatures

Σ0
//

��

Σ1

��
Σ2

// Σ
ð

Σ̂0
//

��

Σ̂1

��

Σ̂2
// Σ̂

the corresponding diagram of representations is again a pushout,
in the category

∫

Σ
MonΣ:

Definition
object is a triple (Σ, R, r) where Σ is a signature, R is a

monad, and r is an action of Σ in R.

morphism from (Σ1, R1, r1) to (Σ2, R2, r2) is a pair (i, m):
• signature morphism i : Σ1 −→ Σ2
• m : (R1, r1)→ (R2, i∗(r2)) morphism of
Σ1-models
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morphism from (Σ1, R1, r1) to (Σ2, R2, r2) is a pair (i, m):
• signature morphism i : Σ1 −→ Σ2
• m : (R1, r1)→ (R2, i∗(r2)) morphism of
Σ1-models



Modularity II

Modularity follows from the projection being a Grothendieck
fibration

∫

Σ
MonΣ

��

Sig

Modularity
allows one to assemble complicated languages by gluing together
simpler ones
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Goal

Goal
Integrate some “semantic” equalities into the syntax.

• For instance, a binary operator is semantically symmetric
(e.g., addition, parallel-or,. . . ).

• Instead of defining that a posteriori, integrate this symmetry
in the syntax.

Can be expressed as quotients of signatures



Presentations of a signature

Definition
A presentation of Σ is an algebraic signature Ψ and an
epimorphism

Ψ

����
Σ

Theorem (Ahrens, Hirschowitz, Lafont, Maggesi)
Presentable signatures are representable.



Signature for a commutative binary operator

Θ×Θ

����
S2 ·Θ

A model of S2 ·Θ is a pair (R, m : R× R→ R) such that
mX (a, b) = mX (b, a).



Example: explicit substitution
Consider p-ary substitution

substp : R(p) × Rp −→ R

Calculi with explicit substitution allow delaying substitutions. If
u : [p] −→ [q] a function, we expect

R(p) × Rq 1×Ru
//

R(u)×1
��

R(p) × Rp

substp

��
R(q) × Rq

substq

// R

Signature for a coherent family of explicit substitutions

∫ p:N

Θ(p) ×Θp
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Goal

1. Develop an explicit notion of equation over a signature

2. Define a 2-signature to be a pair of a (1-)signature and a
family of equations over it

3. Define models and representability for a 2-signature

4. Identify sufficient criteria for a 2-signature to be representable



η and β for lambda calculus

abs(app(ι f ,∗)) = f

app(abs( f ), a) = f [∗ := a]

What are f and a?
Consider

LC→ LC
f 7→ abs(app(ι f ,∗)) (lhs)

f 7→ f (rhs)

and

LC′ × LC→ LC
( f , a) 7→ app(abs( f ), a) (lhs)

( f , a) 7→ f [∗ := a] (rhs)



Equations over ΣLC

We can abstract from LC:

η : (R,app,abs) 7→
R→ R

f 7→ abs(app(ι f ,∗))
f 7→ f

and

β : (R,app,abs) 7→
R′ × R→ R

( f , a) 7→ app(abs( f ), a)

( f , a) 7→ f [∗ := a]

Source and target of an equation over Σ are given by
Σ-modules. . .
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Σ-modules

Definition

A Σ-module is a functor T from the category MonΣ of Σ-monads
to the category

∫

R Mod(R) commuting with the forgetful functors
to the category Mon of monads,

MonΣ

##

T //
∫

R Mod(R)

yy

Mon

Example
• (R, app, abs) 7→ R
• (R, app, abs) 7→ R′ × R



2-signatures

Definition (Equation over Σ)
A Σ-equation is a pair

e1, e2 : Ψ→ Φ

of parallel morphisms of Σ-modules.

Definition (2-signature)
A 2-signature is a pair (Σ, E) where Σ is a (1-)signature and E is a
family of equations over Σ.

Example
(ΣLC, (β ,η)) is the 2-signature of lambda calculus with β- and
η-equality.



Models of 2-signatures

Definition
A model of (Σ, E) is a model M of Σ such that, for any equation
(e1, e2) of E, we have e1(M) = e2(M).

Mon(Σ,E) ⊂MonΣ

Example
Let Σ := Θ. The equation

(R, r) 7→
R→ R+ R

x 7→ inl(x)
x 7→ inr(x)

is never satsified.



Elementary equations

Definition
An equation is elementary if

1. the source is of the form (R, r) 7→ R(a1) × . . .× R(an)

2. the target is of the form (R, r) 7→ R(a)

Theorem (A-H-L-M)
If Σ is representable, and E is a family of elementary Σ-equations,
then (Σ, E) is representable.

Theorem (with axiom of choice)
Reflection

Mon(Σ,E)
R

))

L

ii > MonΣ



Modularity

∫

(Σ,E)Mon(Σ,E)
UMod

**

FMod

jj >

2π

��

∫

Σ
MonΣ

π

��

2Sig
USig

**

FSig

jj > Sig

A pushout diagram of representable 2-signatures yields a pushout
diagram of representations “above”.
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Fixpoint operator

Definition
A fixed point combinator is a lambda term Y s.t. for any term t,
app(t,app(Y, t)) = app(Y, t).

Definition

A unary fixpoint operator for a monad R is a module morphism
f : R′→ R such that

R′
〈1R′ , f 〉 //

f
��

R′ × R

substR||
R

Lemma
There is a one-to-one correspondence between fixpoint operators in
LCβη and fixpoint combinators Y .



2-Signature of an explicit fixpoint operator

Signature Θ′

Model of signature (R,fix : R′→ R)

Equation

(R,fix : R′→ R) 7→
R′

〈1,fix〉
// R′ × R

substR // R

R′ fix
// R



Recursion principle

Proposition (Recursion principle)
Let S be the monad underlying the initial model of the 2-signature Υ .
To any action a of Υ in T is associated a unique monad morphism
â : S→ T.



Translation from LC with explicit fixpoint operator to LC

Definition
ΥLCβη,fix := ΥLCβη + Υfix with
• ΥLCβη = (ΣLC, (β ,η))

• Υfix = (Θ′,fix)

To specify a translation LCβη,fix to LCβη, it suffices to
• specify an action a of Θ′ in LCβη
• such that the equation fix(LCβη, a) is satisfied

Can pick a : LC′βη→ LCβη to by induced, e.g., by Curry fixpoint
combinator.
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Goal

To give a notion of arity/signature that encompasses
• signatures for terms
• equations between terms
• reductions between terms

Definition
An arity over C is a quadruple (D, a, u, v)

D

a

��

C

u

DD

v

ZZ

with u, v : C→ D sections of a : D→ C.



Actions of an arity

Definition
An action of an arity A= (D, a, u, v) on an object c ∈ C is a
morphism h : u(c)→ v(c) such that a(h) = 1c .

Definition
A= (D, a, u, v) arity over C, and c1, c2 : C with actions
h1 : u(c1)→ v(c1) and h2 : u(c2)→ v(c2). A morphism f : c1→ c2
is compatible with the actions h1 and h2 if

u(c1)
h1 //

u( f )
��

v(c1)

v( f )
��

u(c2) h2

// v(c2)

commutes.



Arities encompass signatures

Definition

Any signature Σ : Mon→
∫

R Mod(R) gives rise to an arity over Mon
as

∫

R Mod(R)

π

��

Mon

Σ

FF

Θ

XX



Arities encompass equations
Any equation e1 = e2 : Ψ→ Φ over a signature
Σ : Mon→

∫

R Mod(R) gives rise to an arity over MonΣ as

D

π

��

MonΣ

e1

DD

e2

ZZ

with
• object of D is pair (R, h) with h : Ψ(R)→ Φ(R)
• morphism (R, h)→ (S, i) is model morphism f : R→ S such

that

Ψ(R) h //

Ψ( f )
��

Φ(R)

Φ( f )
��

Ψ(S)
i
// Φ(S)
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An alternative definition of arities

D

a

��

C

u

DD

v

ZZ

When a is a Grothendieck fibration, this is the same as
• a pseudofunctor a : Cop→ Cat
• natural transformations u, v : 1→ a.



Reductions as edges in a graph

• To integrate reduction rules into the picture, we consider
monads relative to an inclusion Set→ Graph; we call these
“reduction monads”

• A reduction rule is an arity over the category RedMonΣ of
models of Σ in such relative monads

• a : D→ RedMonΣ is the Grothendieck fibration corresponding
(through the Grothendieck construction) to the functor
mapping a reduction Σ-monad R to the category
Mod(R)/MVarA (R);

• u maps a reduction Σ-monad R to
hypA (R) : HypA (R)→MVarA (R)

• v maps a reduction Σ-monad R to
conA (R) : ConA (R)→MVarA (R)



Initial semantics for reduction signatures

A reduction signature consists of
• a signature Σ over Mon
• a family R of reduction rules over RedMonΣ

Theorem
Let (Σ,R) be a reduction signature. If Σ is representable, then so is
(Σ,R).



Thanks for your attention!
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